Chapter 5: Stochastic Differential Equations

Exercise Solutions: Exercises 5.1, 5.3, 5.4

5.1. Verify that the given processes solve the given corresponding stochastic differential equations (B_{t} denotes 1 dimensional Brownian motion)
(i) $X_{t}=e^{B_{t}}$ solves $d X_{t}=\frac{1}{2} X_{t} d t+X_{t} d B_{t}$: Apply Itô's formula on $g(x, t)=e^{x}$ to get that $d X_{t}=e^{x} d B_{t}+\frac{1}{2} e^{x}\left(d B_{t}\right)^{2}=X_{t} d B_{t}+\frac{1}{2} X_{t} d t$
(iv) $\left(X_{1}(t), X_{2}(t)\right)=\left(t, e^{t} B_{t}\right)$ solves $\binom{d X_{1}}{d X_{2}}=\binom{1}{X_{2}} d t+\binom{0}{e^{X_{1}}} d B_{t}$

Do this separately. $d X_{t}=d t$ is solved by $X_{t}(t)=t$, since by Itô's formula with $g(x, t)=t, d X_{t}=d t$ (everything else 0).
We want to verify that $d X_{2}=X_{2} d t+e^{X_{1}} d B_{t}=X_{2} d t+e^{t} d B_{t}$ is solved by $X_{2}=e^{t} B_{t}$. Use Itô's formula with $g(x, t)=e^{t} x$. Then $d X_{2}=e^{t} x d t+e^{t} d B_{t}=X_{2} d t+e^{t} d B_{t}$
(v) $\left(X_{1}(t), X_{2}(t)\right)=\left(\cosh \left(B_{t}\right), \sinh \left(B_{t}\right)\right)$ solves $\binom{d X_{1}}{d X_{2}}=\frac{1}{2}\binom{X_{1}}{X_{2}} d t+\binom{X_{2}}{X_{1}} d B_{t}$
$d X_{1}=\frac{1}{2} X_{1} d t+X_{2} d B_{t}$: Use Itô's formula with $g(x, t)=\cosh (x)$ to get $d X_{1}=\sinh (x)+\frac{1}{2} \cosh (x) d t$ $d X_{2}=\frac{1}{2} X_{2} d t+X_{1} d B_{t}$: Use Itô's formula with $g(x, t)=\sinh (x)$ to get $d X_{2}=\cosh (x) d B_{t}+\frac{1}{2} \sinh (x) d t$
5.3. Let $\left(B_{1}, \ldots, B_{n}\right)$ be Brownian motion in $\mathbb{R}^{n}, \alpha_{1}, \ldots, \alpha_{n}$ constants. Solve the stochastic differential equation $d X_{t}=r X_{t} d t+X_{t}\left(\sum_{k=1}^{n} \alpha_{k} d B_{k}(t)\right)$ for $X_{0}>0$. (This is a model for exponential growth and sevearl independent white noise sources in the relative growth rate.)

This is almost identical to Example 5.1.1:
$\frac{1}{X_{t}} d X_{t}=r d t+\sum_{k=1}^{n} \alpha_{k} d B_{k}(t)(\star)$
$\int_{0}^{t} \frac{1}{X_{t}} d X_{t}=r t+\sum_{k=1}^{n} \alpha_{k} B_{k}(t)$
$d\left(\log X_{t}\right)=\frac{1}{X_{t}} d X_{t}-\frac{1}{2 X_{t}^{2}}\left(d X_{t}\right)^{2}$ by Itô's formula with $g(t, x)=\log x$
$d\left(\log X_{t}\right)=\frac{1}{X_{t}} d X_{t}-\frac{1}{2} \sum_{k=1}^{n} \alpha_{k}^{2} d t$ by $\left(d X_{t}\right)^{2}=\left(r X_{t} d t+X_{t} \sum_{k=1}^{n} \alpha_{k} d B_{k}(t)\right)^{2}=X_{t}^{2} \sum_{k=1}^{n} \alpha_{k}^{2} d t$ $\frac{1}{X_{t}} d X_{t}=d\left(\log X_{t}\right)+\frac{1}{2} \sum_{k=1}^{n} \alpha_{k}^{2} d t(\star \star)$

Then we have $r d t+\sum_{k=1}^{n} \alpha_{k} d B_{k}(t)=d\left(\log X_{t}\right)+\frac{1}{2} \sum_{k=1}^{n} \alpha_{k}^{2} d t$
$d\left(\log X_{t}\right)=r d t+\sum_{k=1}^{n} \alpha_{k} d B_{k}(t)-\frac{1}{2} \sum_{k=1}^{n} \alpha_{k}^{2} d t$
$=\left(r-\frac{1}{2} \sum_{k=1}^{n} \alpha_{k}^{2}\right) d t+\sum_{k=1}^{n} \alpha_{k} d B_{k}(t)$
So like with separable ODEs, we write
$\int_{0}^{t} d\left(\log X_{t}\right)=\int_{0}^{t}\left(r-\frac{1}{2} \sum_{k=1}^{n} \alpha_{k}^{2}\right) d t+\int_{0}^{t} \sum_{k=1}^{n} \alpha_{k} d B_{k}(t)$
$\log X_{t}=\log X_{0}+t\left(r-\frac{1}{2} \sum_{k=1}^{n} \alpha_{k}^{2}\right)+\sum_{k=1}^{n} \alpha_{k} B_{k}(t)$
$X_{t}=X_{0} \exp \left(t\left(r-\frac{1}{2} \sum_{k=1}^{n} \alpha_{k}^{2}\right)+\sum_{k=1}^{n} \alpha_{k} B_{k}(t)\right)$
5.4. Solve the following stochastic differential equations:
(ii) $d X_{t}=X_{t} d t+d B_{t}$. Hint: Multiply both sides with 'the integrating factor' e^{-t} and compare with $d\left(e^{-t} X_{t}\right)$

Ww follow the hint: $e^{-t} d X_{t}=e^{-t} X_{t} d t+e^{-t} d B_{t}$. We want to compare this with $d\left(e^{-t} X_{t}\right)$, so we use Itô's formula on $g(x, t)=e^{-t} x$, which, to our pleasant surprise, yields
$d\left(e^{-t} X_{t}\right)=-X_{t} e^{-t} d t+e^{-t} d X_{t}=-e^{-t} X_{t} d t+e^{-t} d X_{t}$
Then $e^{-t} d B_{t}=-e^{-t} X_{t} d t+e^{-t} d X_{t}=d\left(e^{-t} X_{t}\right)$
$\left.\int_{0}^{t} e^{-t} d B\right) t=\int_{0}^{t} d\left(e^{-t} X_{t}\right)$
$\int_{0}^{t} e^{-t} d B_{t}=e^{-t} X_{t}$
$X_{t}=e^{t} \int_{0}^{t} e^{-s} d B_{s}+X_{0} e^{t}$

