Chapter 7 - Diffusions: Basic Properties

Exercise Solutions: Exercises 7.1, 7.2, 7.12
7.1. Find the generator of the following Itô diffusions:

First, we state Theorem 7.3 .3 which will come of great aid: If X_{t} is the Itô diffusion $d X_{t}=b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d B_{t}$, and $f \in C_{0}^{2}\left(\mathbb{R}^{n}\right)$, then $f \in \mathcal{D}_{A}$ and $A f(x)=\sum_{i} b_{i}(x) \frac{\partial f}{\partial x_{i}}+\frac{1}{2} \sum_{i, j}\left(\sigma \sigma^{T}\right)_{i, j}(x) \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}$
(a) Ornstein-Uhlenbeck process: $d X_{t}=\mu X_{t} d t+\sigma d B_{t}$ for $B_{t} \in \mathbb{R}, \mu, \sigma$ constants
$\sum_{i} b_{i}(x) \frac{\text { partialf }}{\partial x_{i}}=\mu x \frac{\partial f}{\partial x_{i}}$ and $\sum_{i, j}\left(\sigma \sigma^{T}\right)(x)=\sigma^{2}$
So $A f(x)=\mu x f^{\prime}(x)+\frac{1}{2} \sigma^{2} f^{\prime \prime}(x)$ if $f \in C_{0}^{2}\left(\mathbb{R}^{n}\right)$
(b) Geometric Brownian motion: $d X_{t}=r X_{t} d t+\alpha X_{t} d B_{t}$ for $B_{t} \in \mathbb{R}, r, \alpha$ constants
$\sum_{i} b_{i}(x) \frac{\partial f}{\partial x_{i}}=r x f^{\prime}(x)$ and $\sum_{i, j}\left(\sigma \sigma^{T}\right)(x)=\alpha^{2} x^{2}$
So $A f(x)=r x f^{\prime}(x)+\frac{1}{2} \alpha^{2} x^{2} f^{\prime \prime}(x)$ if $f \in C_{0}^{2}\left(\mathbb{R}^{n}\right)$
(c) $d Y_{t}=r d t+\alpha Y_{t} d B_{t}$ for $B_{t} \in \mathbb{R}, r, \alpha$ constants
$\sum_{i} b_{i}(y) \frac{\partial f}{\partial y_{i}}=r f^{\prime}(y)$ and $\sum_{i, j}\left(\sigma \sigma^{T}\right)(y)=\alpha^{2} y^{2}$
So $A f(x)=r f^{\prime}(y)+\frac{1}{2} \alpha^{2} y^{2} f^{\prime \prime}(y)$ if $f \in C_{0}^{2}\left(\mathbb{R}^{n}\right)$
(e) $\binom{d X_{1}}{d X_{2}}=\binom{1}{X_{2}} d t+\binom{0}{e^{X_{1}}} d B_{t}$ for $B_{t} \in \mathbb{R}$
$\sum_{i} b_{i}(x) \frac{\partial f}{\partial x_{i}}=\frac{\partial f}{\partial x_{1}}+x_{2} \frac{\partial f}{\partial x_{2}}$ and $\sum_{i, j}\left(\sigma \sigma^{T}\right)(x) \frac{\partial^{2} f}{\partial x_{i}^{2}}=0+\frac{1}{2} e^{2 x_{1}} \frac{\partial^{2} f}{\partial x_{2}^{2}}$
So $A f(x)=\frac{\partial f}{\partial x_{1}}+x_{2} \frac{\partial f}{\partial x_{2}}+\frac{1}{2} e^{2 x_{1}} \frac{\partial^{2} f}{\partial x_{2}^{2}}$
(f) $\binom{d X_{1}}{d X_{2}}=\binom{1}{0} d t+\left(\begin{array}{cc}1 & 0 \\ 0 & X_{1}\end{array}\right)\binom{d B_{1}}{d B_{2}}$
$\sum_{i} b_{i}(x) \frac{\partial f}{\partial x_{i}}=\frac{\partial f}{\partial x_{1}}+0$ and $\sum_{i, j}\left(\sigma \sigma^{T}\right)(x) \frac{\partial^{2} f}{\partial x_{i}^{2}}=\frac{\partial^{2} f}{\partial x_{1}^{2}}+x_{1}^{2} \frac{\partial^{2} f}{\partial x_{2}^{2}}$
So $A f(x)=\frac{\partial f}{\partial x_{1}}+\frac{1}{2} \frac{\partial^{2} f}{\partial x_{1}^{2}}+\frac{1}{2} x_{1}^{2} \frac{\partial^{2} f}{\partial x_{2}^{2}}$
(g) $X(t)=\left(X_{1}, \ldots, X_{n}\right)$ where $d X_{k}(t)=r_{k} X_{k} d t+X_{k} \cdot \sum_{j=1}^{n} \alpha_{k j} d B_{j}$ for $1 \leq k \leq n,\left(B_{1}, \ldots, B_{n}\right)$ Brownian motion in $\mathbb{R}^{n}, r_{k}, \alpha_{k j}$ constants
$\sum_{i} b_{i}(x) \frac{\partial f}{\partial x_{i}}=\sum_{k} r_{k} x_{k} \frac{\partial f}{\partial x_{k}}$ and $\sum_{i, j}\left(\sigma \sigma^{T}\right)(x) \frac{\partial^{2} f}{\partial x_{i}^{2}}=\sum_{i, j} x_{i} x_{j} \sum_{k} \alpha_{i k} \alpha_{j k} \frac{\partial^{2} f}{\delta x_{i} \dot{x} x_{j}}$
So $A f(x)=\sum_{k} r_{k} x_{k} \frac{\partial f}{\partial x_{k}}+\frac{1}{2} \sum_{i, j} x_{i} x_{j}\left(\sum_{k} \alpha_{i k} \alpha_{j k}\right) \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}$
7.2 Find an Itô diffusion (i.e: write down the stochastic differential equation for it) whose generator is the following:
(b) $A f(t, x)=\frac{\partial f}{\partial t}+c x \frac{\partial f}{\partial x}+\frac{1}{2} \alpha^{2} x^{2} \frac{\partial^{2} f}{\partial x^{2}}$ for $f \in C_{0}^{2}\left(\mathbb{R}^{2}\right)$

We work backwards from Theorem 7.3.3. Guess that b is something like $c X$, since then we'd get $c x \frac{\partial f}{\partial x}$ in the generator. Guess that σ is something like αx, again so that we'd get $\frac{1}{2} \alpha^{2} x^{2} \frac{\partial^{2} f}{\partial x_{2}}$ in the generator. Since we have 3 terms, from 7.1 (f) we guess this is something 2-dimensional.

This works: $\binom{d X_{1}}{d X_{2}}=\binom{1}{c X_{2}} d t+\binom{0}{\alpha X_{2}} d B_{t}$. Apply Theorem 7.3.3 to get the desired generator. Maybe this isn't unique-hope to find out someday
7.12 (Local martingales.) An \mathcal{N}_{t}-adapted stochastic process $Z_{t} \in \mathbb{R}^{n}$ is called a local martingale with respect to the given filtration $\left\{\mathcal{N}_{t}\right\}$ if there exists an increasing sequence of \mathcal{N}_{t}-stopping times τ_{k} s.t. $\tau_{k} \rightarrow \infty$ almost surely as $k \rightarrow \infty$, and $Z\left(t \wedge \tau_{k}\right)$ is an \mathcal{N}_{t}-martingale for all k.
(a) Show that if Z_{t} is a local martingale and there exists a constant $T \leq \infty$ s.t. that the family $\left\{Z_{t}\right\}_{t \leq T}$ is uniformly-integrable, then $\left\{Z_{t}\right\}_{t \leq T}$ is a martingale.

We want to show that $E\left(Z_{t} \mid \mathcal{F}_{s}\right)=Z_{s}$ for $z<t \leq T$. Since Z_{t} is a local martingale, we have $E\left(Z_{t \wedge \tau_{k}} \mid \mathcal{F}_{s}\right)=Z_{s \wedge \tau_{k}}$
As $k \rightarrow \infty, Z_{s \wedge \tau_{k}} \rightarrow Z_{s}, Z_{t \wedge \tau_{k}} \rightarrow Z_{t}$. By uniform integrability, $E\left(Z_{t} \mid \mathcal{F}_{s}\right)=\lim _{k \rightarrow \infty} E\left(Z_{t \wedge \tau_{k}} \mid \mathcal{F}_{s}\right)=\lim _{k \rightarrow \infty} Z_{s \wedge \tau_{k}}=Z_{s}$
(b) In particular, if Z_{t} is a local martingale and there exists a constant $K<\infty$ s.t. $E\left(Z_{\tau}^{2}\right) \leq K$ for all $\tau \leq T$, then $\left\{Z_{t}\right\}_{t \leq T}$ is a martingale.

The condition $E\left(Z_{\tau}^{2}\right) \leq K$ for all $\tau \leq T$ means that $\left\{Z_{\tau}\right\}_{\tau \leq T}$ is uniformly integrable, so we apply part (a).
(c) Show that, if Z_{t} is a lower bounded local martingale, then Z_{t} is a supermartingale.

We want to show that Z_{t}. is s.t. $E\left(Z_{t} \mid \mathcal{F}_{s}\right) \leq Z_{s}$. Use Fatou's lemma from Chapter 5 to get that $E\left(Z_{t} \mid \mathcal{F}_{s}\right) \leq \lim _{k \rightarrow \infty} E\left(Z_{t \wedge \tau_{k}} \mid \mathcal{F}_{s}\right)$, which is Z_{s} by Z_{t} being a local martingale.

