Chapter 7 - Diffusions: Basic Properties

Exercise Solutions: Exercises 7.1, 7.2, 7.12

7.1. Find the generator of the following Itô diffusions:

First, we state Theorem 7.3.3 which will come of great aid: If X_t is the Itô diffusion $dX_t = b(X_t)dt + \sigma(X_t)dB_t$, and $f \in C_0^2(\mathbb{R}^n)$, then $f \in \mathcal{D}_A$ and $Af(x) = \sum_i b_i(x)\frac{\partial f}{\partial x_i} + \frac{1}{2}\sum_{i,j}(\sigma\sigma^T)_{i,j}(x)\frac{\partial^2 f}{\partial x_i\partial x_j}$

(a) Ornstein-Uhlenbeck process: $dX_t = \mu X_t dt + \sigma dB_t$ for $B_t \in \mathbb{R}$, μ, σ constants

 $\sum_i b_i(x) \frac{partialf}{\partial x_i} = \mu x \frac{\partial f}{\partial x_i} \text{ and } \sum_{i,j} (\sigma \sigma^T)(x) = \sigma^2$ So $Af(x) = \mu x f'(x) + \frac{1}{2} \sigma^2 f''(x) \text{ if } f \in C_0^2(\mathbb{R}^n)$

(b) Geometric Brownian motion: $dX_t = rX_t dt + lpha X_t dB_t$ for $B_t \in \mathbb{R}$, r, lpha constants

 $\sum_i b_i(x) rac{\partial f}{\partial x_i} = rxf'(x) ext{ and } \sum_{i,j} (\sigma\sigma^T)(x) = lpha^2 x^2$ So $Af(x) = rxf'(x) + rac{1}{2}lpha^2 x^2 f''(x) ext{ if } f \in C_0^2(\mathbb{R}^n)$

(c) $dY_t = rdt + lpha Y_t dB_t$ for $B_t \in \mathbb{R}$, r, lpha constants

 $\sum_i b_i(y) rac{\partial f}{\partial y_i} = rf'(y) ext{ and } \sum_{i,j} (\sigma\sigma^T)(y) = lpha^2 y^2$ So $Af(x) = rf'(y) + rac{1}{2} lpha^2 y^2 f''(y) ext{ if } f \in C_0^2(\mathbb{R}^n)$

$$(\mathsf{e}) \ \binom{dX_1}{dX_2} = \binom{1}{X_2} dt + \binom{0}{e^{X_1}} dB_t \ \mathsf{for} \ B_t \in \mathbb{R}$$

 $\sum_i b_i(x) \frac{\partial f}{\partial x_i} = \frac{\partial f}{\partial x_1} + x_2 \frac{\partial f}{\partial x_2} \text{ and } \sum_{i,j} (\sigma \sigma^T)(x) \frac{\partial^2 f}{\partial x_i^2} = 0 + \frac{1}{2} e^{2x_1} \frac{\partial^2 f}{\partial x_2^2}$ So $Af(x) = \frac{\partial f}{\partial x_1} + x_2 \frac{\partial f}{\partial x_2} + \frac{1}{2} e^{2x_1} \frac{\partial^2 f}{\partial x_2^2}$

(f)
$$\begin{pmatrix} dX_1 \\ dX_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} dt + \begin{pmatrix} 1 & 0 \\ 0 & X_1 \end{pmatrix} \begin{pmatrix} dB_1 \\ dB_2 \end{pmatrix}$$

 $\sum_i b_i(x) \frac{\partial f}{\partial x_i} = \frac{\partial f}{\partial x_1} + 0 \text{ and } \sum_{i,j} (\sigma \sigma^T)(x) \frac{\partial^2 f}{\partial x_i^2} = \frac{\partial^2 f}{\partial x_1^2} + x_1^2 \frac{\partial^2 f}{\partial x_2^2}$
So $Af(x) = \frac{\partial f}{\partial x_1} + \frac{1}{2} \frac{\partial^2 f}{\partial x_1^2} + \frac{1}{2} x_1^2 \frac{\partial^2 f}{\partial x_2^2}$

(g) $X(t) = (X_1, \ldots, X_n)$ where $dX_k(t) = r_k X_k dt + X_k \cdot \sum_{j=1}^n \alpha_{kj} dB_j$ for $1 \le k \le n$, (B_1, \ldots, B_n) Brownian motion in \mathbb{R}^n , r_k, α_{kj} constants

$$\sum_{i} b_{i}(x) \frac{\partial f}{\partial x_{i}} = \sum_{k} r_{k} x_{k} \frac{\partial f}{\partial x_{k}} \text{ and } \sum_{i,j} (\sigma \sigma^{T})(x) \frac{\partial^{2} f}{\partial x_{i}^{2}} = \sum_{i,j} x_{i} x_{j} \sum_{k} \alpha_{ik} \alpha_{jk} \frac{\partial^{2} f}{\partial x_{i} \delta x_{j}}$$

So $Af(x) = \sum_{k} r_{k} x_{k} \frac{\partial f}{\partial x_{k}} + \frac{1}{2} \sum_{i,j} x_{i} x_{j} (\sum_{k} \alpha_{ik} \alpha_{jk}) \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}$

7.2 Find an Itô diffusion (i.e: write down the stochastic differential equation for it) whose generator is the following:

(b)
$$Af(t,x)=rac{\partial f}{\partial t}+cxrac{\partial f}{\partial x}+rac{1}{2}lpha^2x^2rac{\partial^2 f}{\partial x^2}$$
 for $f\in C_0^2(\mathbb{R}^2)$

We work backwards from Theorem 7.3.3. Guess that b is something like cX, since then we'd get $cx\frac{\partial f}{\partial x}$ in the generator. Guess that σ is something like αx , again so that we'd get $\frac{1}{2}\alpha^2 x^2 \frac{\partial^2 f}{\partial x_2}$ in the generator. Since we have 3 terms, from 7.1 (f) we guess this is something 2-dimensional.

This works: $\binom{dX_1}{dX_2} = \binom{1}{cX_2} dt + \binom{0}{\alpha X_2} dB_t$. Apply Theorem 7.3.3 to get the desired generator. Maybe this isn't unique—hope to find out someday

7.12 (Local martingales.) An \mathcal{N}_t -adapted stochastic process $Z_t \in \mathbb{R}^n$ is called a local martingale with respect to the given filtration $\{\mathcal{N}_t\}$ if there exists an increasing sequence of \mathcal{N}_t -stopping times τ_k s.t. $\tau_k \to \infty$ almost surely as $k \to \infty$, and $Z(t \wedge \tau_k)$ is an \mathcal{N}_t -martingale for all k.

(a) Show that if Z_t is a local martingale and there exists a constant $T \leq \infty$ s.t. that the family $\{Z_t\}_{t \leq T}$ is uniformly-integrable, then $\{Z_t\}_{t < T}$ is a martingale.

We want to show that $E(Z_t \mid \mathcal{F}_s) = Z_s$ for $z < t \le T$. Since Z_t is a local martingale, we have $E(Z_{t \land \tau_k} \mid \mathcal{F}_s) = Z_{s \land \tau_k}$ As $k \to \infty$, $Z_{s \land \tau_k} \to Z_s$, $Z_{t \land \tau_k} \to Z_t$. By uniform integrability, $E(Z_t \mid \mathcal{F}_s) = \lim_{k \to \infty} E(Z_{t \land \tau_k} \mid \mathcal{F}_s) = \lim_{k \to \infty} Z_{s \land \tau_k} = Z_s$

(b) In particular, if Z_t is a local martingale and there exists a constant $K < \infty$ s.t. $E(Z_{\tau}^2) \leq K$ for all $\tau \leq T$, then $\{Z_t\}_{t \leq T}$ is a martingale.

The condition $E(Z^2_{\tau}) \leq K$ for all $\tau \leq T$ means that $\{Z_{\tau}\}_{\tau \leq T}$ is uniformly integrable, so we apply part (a).

(c) Show that, if Z_t is a lower bounded local martingale, then Z_t is a supermartingale.

We want to show that Z_t is s.t. $E(Z_t | \mathcal{F}_s) \leq Z_s$. Use Fatou's lemma from Chapter 5 to get that $E(Z_t | \mathcal{F}_s) \leq \lim_{k \to \infty} E(Z_{t \wedge \tau_k} | \mathcal{F}_s)$, which is Z_s by Z_t being a local martingale.