
Chapter 7 - Diffusions: Basic Properties

Exercise Solutions: Exercises 7.1, 7.2, 7.12

7.1. Find the generator of the following Itô diffusions:

First, we state Theorem 7.3.3 which will come of great aid: If  is the Itô diffusion ,

and , then  and 

(a) Ornstein-Uhlenbeck process:  for ,  constants

 and  

So  if 

(b) Geometric Brownian motion:  for ,  constants

 and  

So  if 

(c)  for ,  constants

 and  

So  if 

(e)  for 

 and  

So 

(f) 

 and  

So 

(g)  where  for ,  Brownian

motion in ,  constants

 and  

So 

.
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7.2 Find an Itô diffusion (i.e: write down the stochastic differential equation for it) whose generator is the

following:

(b)  for 

We work backwards from Theorem 7.3.3. Guess that  is something like , since then we'd get  in the

generator. Guess that  is something like , again so that we'd get  in the generator. Since we have 3

terms, from 7.1 (f) we guess this is something 2-dimensional.

This works: . Apply Theorem 7.3.3 to get the desired generator. Maybe this

isn't unique—hope to find out someday

.

7.12 (Local martingales.) An -adapted stochastic process  is called a local martingale with respect to

the given filtration  if there exists an increasing sequence of -stopping times  s.t.  almost surely

as , and  is an -martingale for all .

(a) Show that if  is a local martingale and there exists a constant  s.t. that the family  is

uniformly-integrable, then  is a martingale.

We want to show that  for . Since  is a local martingale, we have 

 

As , , . By uniform integrability, 

(b) In particular, if  is a local martingale and there exists a constant  s.t.  for all ,

then  is a martingale.

The condition  for all  means that  is uniformly integrable, so we apply part (a).

(c) Show that, if  is a lower bounded local martingale, then  is a supermartingale.

We want to show that . is s.t. . Use Fatou's lemma from Chapter 5 to get that 

, which is  by  being a local martingale.
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