
Chapter 2: Some Mathematical Preliminaries

Notes | Exercise Solutions

Notes

Here, we rigorously define some important concepts in probability theory.

Notation note:  used for the probability of , and  used for the power set of .

Def (Probability space): The 3-tuple , where

1.  is a set containing elements which represents the sample space of outcomes

2.  ( -algebra/ -field) is a set of subsets of  (that is, ) that satisfies 3 conditions:

1. It contains , the empty set

2. Closure under unions: If  and , then 

3. Closure under complements wrt : If , then 

3.  is a function that assigns values between 0 and 1 to elements of  (i.e: subsets of )

that satisfies:

1.  and .

2. Countable additivity: For a countable collection of disjoint events , 

Def (Complete probability space): Say that  is a complete probability space if  contains all

nullsets. What's a nullset? This builds up to it:

Def (Outer measure): An outer measure  is a function that maps all possible events in the

sample space to the extended real numbers, , which satisfies:

1. 

2. Countable additivity: For countable subsets , if  then 

Probability measures satisfy all the conditions of being an outer measure, except the domain is 

instead of . But we can kind of fix this: Given a probability space , define the -

outer measure as the mapping





Our domain gets to be  now, because  is defined for all subsets of , since  itself is in

every -algebra.

Def (Nullset): Say that  is a nullset if it has -outer measure ; that is, 

Def (Measurability, of an event): Say that  is -measurable if . Then, call  an 'event' and

say that  'occurs with' probability .

Some remarks:

The smallest -algebra: What's the smallest set of subsets of  that satisfies the three properties

above? If we don't specify anything else, the smallest possible . The smallest -algebra

containing  is called  or , the -algebra generated by 
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The largest -algebra: Why not just use  as ? Each element of  is essentially an 'event'

that can be assigned a probability. We care about carving out subsets of  to use for  in our

assignment of probabilities because we run into trouble when trying to define  in a nice way for

certain  (it's not a problem for discrete ones). It might be too big.

On : A probability space is a special case of a measure space. It's a special case because of the 

 condition.

Random variables:

Def (Measurability, of a function): Say that a function  is -measurable if the pre-images of

all open sets are -measurable, , for all open sets . Basically,

the pre-image of  by every open set in  is in .

Def (Random variable): Let  be a complete probability space. Then a random variable 

 is an -measurable function.

Lemma (Doob-Dynkin, special case): Let , and let  be the -algebra generated by 

(i.e: smallest -algebra containing ). Then  is -measurable if and only if there exists a mapping 

 between  and  s.t. , and  is Borel-measurable. That is, all of the pre-images

of  on open sets are Borel sets

Def (Probability distributions): We didn't need  to define what a random variable is, since it's just a

mapping from  to the reals. But now we need  to measure probabilities, because no shit.


Let  be a random variable. Then the distribution of  is the probability measure induced by , 

 for all 

Def (Expectation): Using the 'weights' assigned to each event by , we define the weighted average of

all possible events as 

 spaces

We'd like to to measure the norm of a random variable, and the distance between random variables. So

we make them live in a function space, like an -space

Def (Of a random variable , its -norm): Of any , its  norm is 

(for , this is the Euclidean norm). Of a random variable  on sample space  with probability

measure , for finite  it is  and for  it is 

Def (  space, ): Contains all random variables  with finite  norms, with

distance metric induced by the  norm, . Note that under this metric,  spaces

are Banach spaces. In the special case of , it is a Hilbert space.

Def (Independence):

Of events: Say that  are independent if 

Of collections of events: Say that  are independent if for all pairs ,  and 

are independent

Of random variables: Say that  are independent if  and , the -algebras generated

by  and , are independent
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Def (Stochastic process): On , a collection of random variables  indexed by time.

Fix . Then we have a single random variable  with its associated probability measure.


Fix a path . Then we have a function that depends only on time, since there is no more

randomness.

Thm (Kolmogorov, extension): Given a family of probability measures  on 

, there exists a probability space  and a stochastic process  on  s.t. 

 for all , Borel sets 

1. For all , ,  for all

permutations  of 

2.  for all 

Thm (Kolmogorov, continuity): A stochastic process with discrete time  has a continuous

version if, for all , there exist  s.t.  for 

Very important instantiations

Def (Borel -algebra): Let  be a topological space, like . Let  be the collection of all open subsets

of . Then the Borel -algebra  is , the smallest -algebra that contains .


The elements  that are -measurable are called Borel sets.

Def (Brownian motion): This is the most important stochastic process.

Construction: We 'construct' this process indirectly, by first constructing a measure we like and then

using Kolmogorov's extension theorem to say that it exists. For  and , define 

. We like the following measure: 

This measure satisfies K's 2 conditions, so such a stochastic process in such a probability space

exists. We call this process Brownian motion. It has the following properties, which follow from how

we defined  ...

Properties: Say that a collection of real-valued random variables  is a standard Brownian

motion if it has the following properties:

1. 

2. Each sample path is continuous

3. Stationary and normal increments: For any , 

4. Independent increments: For all disjoint intervals, increments are independent
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Exercise Solutions

Exercises completed: 2.1, 2.2, 2.3, 2.19

2.1. Let  assume only countably many values .

(a) Show that  is a random variable if and only if  for all  (2.2.16)

We know that  is a random variable iff  is -measurable. That is, pre-images of all open sets are measurable,

so  for all open .


: Let  be a random variable. Then by definition, 's pre-images of all open sets are all contained in .

Since  is closed under complements (and we know that pre-images of complements = complements of pre-

images from set theory), pre-images of all closed sets are also in . The singleton set  is closed, so its

pre-image by  is -measurable.


: Let  for all . Since  is closed under infinite unions (and unions of pre-images = pre-images

of unions), we also have that  for any union of 's. Let  be open in . Then 

, since the pre-image of a value that  does not take on is empty. Since  is

countable, so is . So it is a union of 's, which means that it is measurable.

(b) Suppose (a) holds. Show that 

 only takes on countably-many values , so we use the indicator function trick from calculus that

allowed us to integrate over planar regions!: , where 

 if , and  otherwise. Then we have:


, by Fubini's theorem


, since  can only take on the values 


, since  precisely only takes on the value 

 when 

(c) If (a) holds and , show that 

Partition the indices of : Let  be the indices for which , and let  be the indices for which 

. So by (b),  and  where  is  restricted

to its non-negative-valued domain, and  is  restricted to its negative-valued domain. By assumption, the

infinite series absolutely converges, so we can rearrange it to yield 

(d) If (a) holds and  is measurable and bounded, show that 

 is the image of countably-many values , so it also contains at most countably-many values  (by

definition of a function lol). Suppose this is infinite (finite case follows). So  restricted to the image of  is a

random variable, and its expected value is given by part (c) as 

X : Ω → R a1, a2, ⋯ ∈ R
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|X| |a1|, |a2|, …

E(|X|) = ∫Ω X(ω)dP(ω) = ∫Ω |X(ω)|∑∞
k=1 χ(ω)dP(ω)

χ(ω) = 1 ω ∈ X−1(ak) 0

E(|X|) = ∑∞
k=1 ∫Ω |X(ω)|χ(ω)dP(ω)

= ∑∞
k=1 ∫Ω |ak|χ(ω)dP(ω) X(ω) ak

= ∑∞
k=1 |ak| ∫Ω χ(ω)dP(ω) = ∑∞

k=1 |ak|P(X = ak) ∫Ω χ(ω)dP(ω)

P(X = ak) ω = ak

E(|X|) < ∞ E(X) = ∑∞
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ak {i}i∈I ai ≥ 0 {j}j∈J

ai < 0 E(|X1|) = ∑i∈I |ai|P(X = ai) E(|X2|) = ∑j∈J |aj|P(X = aj) X1 X

X2 X

E(X) = E(X1) − E(X2) = ∑∞
k=1 akP(X = ak)

f : R → R E(f(X)) = ∑∞
k=1 f(ak)P(X = ak)

f(X(Ω)) X(Ω) bk

f X
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   may 2023 | for typos/mistakes, email lyra.gao@columbia.edu



2.2. Let  be a random variable. The distribution function  of  is defined by .

(a) Prove that  has the following properties:

, , :  since a probability measure is a function mapping to 

by definition. ,  follow from monotone convergence

 is non-decreasing: We want to show that   . That is, .

Since ,  for some . Then 

. Then by the nonnegativity of probability

measures, this is greater than or equal to 

 is right-continuous: We want to show that  for . Let  be countable

nested subsets of . Then  by -additivity in Definition 2.1.1 (b). We can take 

. Then 

(b) Let  be measurable s.t. . Prove that , where the integral

on the right is interpreted in the Lebesgue-Stieltjes sense.

By definition, , where  is the induced probability measure 

. Then , so 

(c) Let  be a measurable function on . Say that  has density  if  for all . Then

from (2.2.1)–(2.2.2) we know that 1-dimensional Brownian motion  with  has density 

 for . What is the density of ?

Let  be the distribution function of . Then by definition, the desired density  must satisfy 

. We can express this in terms of : 


So we can differentiable both sides to get that 

.

2.3. Let  be a family of -algebras on . Prove that  is again a -algebra.

We'll do this by confirming that  satisfies our 3 properties of -algebras:

1. Contains : Since each  contains , so does their intersection .

2. Closure under complements: Let . Then  for all , and by closure under complements for

each  we have that . So  is in their intersection .

3. Closure under unions: Let . Then  for each , and their union is in each 

 by closure under unions of each . So this union is in their intersection .

X : Ω → R F X F(x) = P(X ≤ x)

F

0 ≤ F ≤ 1 lim
x→−∞

F(x) = 0 lim
x→∞
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F(x) = 0 lim
x→∞
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P(X ≤ x1) = P(X ≤ x2 + ϵ) = P(X ≤ x2) + P(x2 ≤ X ≤ x2 + ϵ)

P(X ≤ x2)

F F(x) = lim
h→0

F(x + h) h > 0 A1 ⊃ A2 ⊃ …

R P( lim
n→∞

An) = lim
n→∞

P(An) σ
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n→∞

An) = P(X ≤ x) = F(x)

g : R → R E(|g(X)|) < ∞ E(g(X)) = ∫ ∞
−∞ g(x)dF(x)

E(g(X)) = ∫Ω f(X(ω))dP(ω) = ∫
R
g(x)dμX(x) μX

μX(B) = P(X−1(B)) μX({X ≤ x}) = P(X−1(X ≤ x)) = P(X ≤ x) = F(x) E(g(x)) = ∫
R
g(x)dF(X)

p(x) ≥ 0 R X p F(x) = ∫ x

−∞ p(y)dy x

Bt B0 = 0

p(x) = 1
√2πt

exp(− x2

2t ) x ∈ R B2
t

F B2
t q(y)

F(x) = P(B2
t ≤ x) = ∫ x

−∞ q(y)dy Bt P(B2
t ≤ x) = P(Bt < √x) = ∫ √x

−∞ p(y)dy

q(x) = p(√x) ⋅ d
dx

√x = 1
√2πt

exp(− x2

2t ) ⋅ 1
2√x

{Hi}i∈I σ Ω H = ∩{Hi ∣ i ∈ I} σ

H σ

∅ Hi ∅ H

A ∈ H A ∈ Hi i ∈ I

Hi Ac ∈ Hi Ac
H

Ai,A2, ⋯ ∈ H A1,A2, ⋯ ∈ Hi i ∈ I

Hi Hi H
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2.19: Let  be a probability space and let . A sequence  of functions  is

called a Cauchy sequence if  as . The sequence is called convergent if there exists 

 such that  in . Prove that every convergent sequence is a Cauchy sequence.

We are confirming that every convergent sequence in a metric space is Cauchy, in the special case where our

metric space is . This is a simple application of the triangle inequality: Let  be a

sequence converging to , so  in . By the triangle inequality, we have that 




By convergence, there exist sufficiently large  and  s.t.  and . So 

, and  is a Cauchy sequence.

(Ω,F ,μ) p ∈ [1, ∞] {fn}∞
n=1 fn ∈ Lp(μ)

||fn − fm||p → 0 n,m → ∞

f ∈ Lp(μ) fn → f Lp(μ)

Lp(μ) {fn}∞
n=1 = f1, f2, …

f fn → f Lp(μ)

||fn − fm||p ≤ ||fn − f||p + ||fm − f||p

n m ||fn − f||p → 0 ||fm − f||p → 0

||fn − fm||p → 0 {fn}∞
n=1
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