Chapter 2: Some Mathematical Preliminaries

Notes | Exercise Solutions

Notes

- Here, we rigorously define some important concepts in probability theory.
- Notation note: $P(A)$ used for the probability of A, and $\mathcal{P}(A)$ used for the power set of A.
- Def (Probability space): The 3 -tuple (Ω, \mathcal{F}, P), where

1. Ω is a set containing elements which represents the sample space of outcomes
2. \mathcal{F} (σ-algebra/ σ-field) is a set of subsets of Ω (that is, $\mathcal{F} \subseteq \mathcal{P}(\Omega)$) that satisfies 3 conditions:
3. It contains \emptyset, the empty set
4. Closure under unions: If $A \in \mathcal{F}$ and $B \in \mathcal{F}$, then $A \cup B \in \mathcal{F}$
5. Closure under complements wrt Ω : If $A \in \mathcal{F}$, then $\Omega \backslash A \in \mathcal{F}$
6. $P: \mathcal{F} \rightarrow[0,1]$ is a function that assigns values between 0 and 1 to elements of \mathcal{F} (i.e: subsets of Ω) that satisfies:
7. $P(\emptyset)=0$ and $P(\Omega)=1$.
8. Countable additivity: For a countable collection of disjoint events $A_{1}, A_{2}, \cdots \in \mathcal{F}$, $P\left(\cup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right)$

- Def (Complete probability space): Say that (Ω, \mathcal{F}, P) is a complete probability space if \mathcal{F} contains all nullsets. What's a nullset? This builds up to it:
- Def (Outer measure): An outer measure P^{*} is a function that maps all possible events in the sample space to the extended real numbers, $P^{*}: \mathcal{P}(\Omega) \rightarrow[0, \infty]$, which satisfies:

1. $P^{*}(\emptyset)=0$
2. Countable additivity: For countable subsets $A, B_{1}, B_{2}, \cdots \subseteq \Omega$, if $A \subseteq \cup_{i=1}^{\infty} B_{i}$ then $P^{*}(A) \leq \sum_{i=1}^{\infty} P\left(B_{i}\right)$

- Probability measures satisfy all the conditions of being an outer measure, except the domain is \mathcal{F} instead of $\mathcal{P}(\Omega)$. But we can kind of fix this: Given a probability space (Ω, \mathcal{F}, P), define the P outer measure as the mapping
$P^{*}(A):=\inf \{P(F) \mid F \in \mathcal{F}, A \subset F\}$
Our domain gets to be $\mathcal{P}(\Omega)$ now, because P^{*} is defined for all subsets of Ω, since Ω itself is in every σ-algebra.
- Def (Nullset): Say that $A \subseteq \Omega$ is a nullset if it has P-outer measure 0 ; that is, $P^{*}(A)=0$
- Def (Measurability, of an event): Say that $F \subseteq \Omega$ is F-measurable if $F \in \mathcal{F}$. Then, call F an 'event' and say that F 'occurs with' probability $P(F)$.
- Some remarks:
- The smallest σ-algebra: What's the smallest set of subsets of Ω that satisfies the three properties above? If we don't specify anything else, the smallest possible $\mathcal{F}=\{\phi, \Omega\}$. The smallest σ-algebra containing A is called $\sigma(A)$ or \mathcal{H}_{A}, the σ-algebra generated by A
- The largest σ-algebra: Why not just use $P(\Omega)$ as F ? Each element of F is essentially an 'event' that can be assigned a probability. We care about carving out subsets of Ω to use for F in our assignment of probabilities because we run into trouble when trying to define P in a nice way for certain Ω (it's not a problem for discrete ones). It might be too big.
- On P: A probability space is a special case of a measure space. It's a special case because of the $P(\Omega)=1$ condition.
- Random variables:
- Def (Measurability, of a function): Say that a function $Y: \Omega \rightarrow \mathbb{R}^{n}$ is \mathcal{F}-measurable if the pre-images of all open sets are \mathcal{F}-measurable, $Y^{-1}(U)=\{\omega \in \Omega \mid Y(\omega) \in U\} \in \mathcal{F}$, for all open sets $U \in \mathbb{R}^{n}$. Basically, the pre-image of Y by every open set in \mathbb{R} is in \mathcal{F}.
- Def (Random variable): Let (Ω, \mathcal{F}, P) be a complete probability space. Then a random variable $X: \Omega \rightarrow \mathbb{R}^{n}$ is an \mathcal{F}-measurable function.
- Lemma (Doob-Dynkin, special case): Let $X, Y: \Omega \rightarrow \mathbb{R}^{n}$, and let \mathcal{H}_{X} be the σ-algebra generated by X (i.e: smallest σ-algebra containing X). Then Y is \mathcal{H}_{X}-measurable if and only if there exists a mapping $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ between X and Y s.t. $Y=g(x)$, and g is Borel-measurable. That is, all of the pre-images of g on open sets are Borel sets
- Def (Probability distributions): We didn't need P to define what a random variable is, since it's just a mapping from Ω to the reals. But now we need P to measure probabilities, because no shit.
Let X be a random variable. Then the distribution of X is the probability measure induced by X, $\mu_{X}(B)=P\left(X^{-1}(B)\right)$ for all $B \in \mathbb{R}^{n}$
- Def (Expectation): Using the 'weights' assigned to each event by X, we define the weighted average of all possible events as $E[X]:=\int_{\Omega} X(\omega) d P(\omega)=\int_{\mathbb{R}^{n}} x d \mu_{X}(x)$
- L^{p} spaces
- We'd like to to measure the norm of a random variable, and the distance between random variables. So we make them live in a function space, like an L^{p}-space
- Def (Of a random variable X, its L^{p}-norm): Of any $x \in \mathbb{R}^{n}$, its L^{p} norm is $\|x\|_{p}=\left(x_{1}^{p}+\cdots+x_{n}^{p}\right)^{1 / p}$ (for $p=2$, this is the Euclidean norm). Of a random variable X on sample space Ω with probability measure P, for finite p it is $\left.\|X\|_{p}=\int_{\Omega}|X(\omega)|^{p} d P(\omega)\right)^{1 / p}$ and for $p=\infty$ it is $\|X\|_{\infty}=\|X\|_{L^{\infty}(P)}=\sup \{|X(\omega)| \mid \omega \in \Omega\}$
- Def (L^{p} space, $L^{p}(P)=L^{p}(\Omega)$): Contains all random variables $X: \Omega \rightarrow \mathbb{R}^{n}$ with finite L^{p} norms, with distance metric induced by the L^{p} norm, $d(X, Y)=\|X-Y\|_{p}$. Note that under this metric, L^{p} spaces are Banach spaces. In the special case of $p=2$, it is a Hilbert space.
- Def (Independence):
- Of events: Say that $A, B \in \mathcal{F}$ are independent if $P(A \cap B)=P(A) \cdot P(B)$
- Of collections of events: Say that $A=\left\{A_{i}\right\}_{i \in I}$ are independent if for all pairs $i, j \in I, i \neq j, A_{i}$ and A_{j} are independent
- Of random variables: Say that $X, Y: \Omega \rightarrow \mathbb{R}$ are independent if \mathcal{H}_{X} and \mathcal{H}_{Y}, the σ-algebras generated by X and Y, are independent
- Def (Stochastic process): On (Ω, \mathcal{F}, P), a collection of random variables $\left\{X_{t}\right\}_{t \in T}$ indexed by time.
- Fix $t \in T$. Then we have a single random variable X_{t} with its associated probability measure. Fix a path $\omega \in \Omega$. Then we have a function that depends only on time, since there is no more randomness.
- Thm (Kolmogorov, extension): Given a family of probability measures $\left\{\nu_{t_{1}}, \ldots, \nu_{t_{k}} \mid k \in \mathbb{N}, t_{i} \in T\right\}$ on $\mathbb{R}^{n k}$, there exists a probability space (Ω, \mathcal{F}, P) and a stochastic process $\left\{X_{t}\right\}$ on Ω s.t. $\nu_{t_{1}, \ldots, t_{k}}\left(F_{1} \times \cdots \times F_{k}\right)=P\left(X_{t_{1}} \in F_{1}, \ldots, X_{t_{k}} \in F_{k}\right)$ for all $t_{i} \in T, k \in \mathbb{N}$, Borel sets F_{i}

1. For all $t_{1}, \ldots, t_{k} \in T, k \in \mathbb{N}, \nu_{t_{\sigma}(1), \ldots, t_{\sigma(k)}}\left(F_{1} \times \cdots \times F_{k}\right)=\nu_{t_{1}, \ldots, t_{k}}\left(F_{\sigma^{-1}(1)} \times \cdots \times F_{\sigma^{-1}(k)}\right)$ for all permutations σ of $\{1, \ldots, k\}$
2. $\nu_{t_{1}, \ldots, t_{k}}\left(F_{1} \times \cdots \times F_{k}\right)=\nu_{t_{1}, \ldots, t_{k}, t_{k+1}, \ldots, t_{k+m}}\left(F_{1} \times \cdots \times F_{k} \times \mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n}\right)$ for all $m \in \mathbb{N}$

- Thm (Kolmogorov, continuity): A stochastic process with discrete time $X=\left\{X_{t}\right\}_{t \geq 0}$ has a continuous version if, for all $T>0$, there exist α, β, D s.t. $E\left[\left|X_{t}-X_{s}\right|^{\alpha}\right] \leq D \cdot|t-s|^{1+\beta}$ for $0 \leq s, t \leq T$
- Very important instantiations
- Def (Borel σ-algebra): Let Ω be a topological space, like \mathbb{R}^{n}. Let U be the collection of all open subsets of Ω. Then the Borel σ-algebra \mathcal{B} is $\sigma(U)$, the smallest σ-algebra that contains U.
The elements $B \in \mathcal{B}$ that are \mathcal{B}-measurable are called Borel sets.
- Def (Brownian motion): This is the most important stochastic process.
- Construction: We 'construct' this process indirectly, by first constructing a measure we like and then using Kolmogorov's extension theorem to say that it exists. For $x, y \in \mathbb{R}^{n}$ and $t>0$, define $p(t, x, y)=(2 \pi t)^{n / 2} \cdot \exp \left(-\frac{|x-y|^{2}}{2 t}\right)$. We like the following measure: $\nu_{t_{1}, \ldots, t_{k}}\left(F_{1} \times \cdots \times F_{k}\right)=\int_{F_{1} \times \times F_{k}} p\left(t_{1}, x, x_{1}\right) p\left(t_{2}-t_{1}, x_{1}, x_{2}\right) \ldots p\left(t_{k}-t_{k-1}, x_{k-1}, x_{k}\right) d x_{1} \ldots d x_{k}$
- This measure satisfies K's 2 conditions, so such a stochastic process in such a probability space exists. We call this process Brownian motion. It has the following properties, which follow from how we defined $v_{t_{1}, \ldots, t_{k}} \ldots$
- Properties: Say that a collection of real-valued random variables $\left\{B_{t}\right\}_{t \geq 0}$ is a standard Brownian motion if it has the following properties:

1. $B_{0}=0$
2. Each sample path is continuous
3. Stationary and normal increments: For any $t>s, B_{t}-B_{s} \sim N(0, t-s)$
4. Independent increments: For all disjoint intervals, increments are independent

Exercise Solutions

Exercises completed: 2.1, 2.2, 2.3, 2.19
2.1. Let $X: \Omega \rightarrow \mathbb{R}$ assume only countably many values $a_{1}, a_{2}, \cdots \in \mathbb{R}$.
(a) Show that X is a random variable if and only if $X^{-1}\left(a_{k}\right) \in \mathcal{F}$ for all $k=1,2, \ldots(2.2 .16)$

We know that X is a random variable iff X is \mathcal{F}-measurable. That is, pre-images of all open sets are measurable, so $X^{-1}(U)=\{\omega \in \Omega \mid X(\omega) \in U\} \in \mathcal{F}$ for all open $U \in \mathbb{R}$.
\Longrightarrow : Let X be a random variable. Then by definition, X 's pre-images of all open sets are all contained in \mathcal{F}. Since \mathcal{F} is closed under complements (and we know that pre-images of complements = complements of preimages from set theory), pre-images of all closed sets are also in \mathcal{F}. The singleton set $\left\{a_{k}\right\} \subset \mathbb{R}$ is closed, so its pre-image by X is \mathcal{F}-measurable.
\Longleftarrow : Let $X^{-1}\left(a_{k}\right) \in \mathcal{F}$ for all k. Since \mathcal{F} is closed under infinite unions (and unions of pre-images $=$ pre-images of unions), we also have that $X^{-1}\left(\cup a_{i}\right) \in \mathcal{F}$ for any union of $a_{i}{ }^{\text {'s }}$. Let U be open in \mathbb{R}. Then $X^{-1}(U)=X^{-1}(U \cap X(\Omega))$, since the pre-image of a value that X does not take on is empty. Since $X(\Omega)$ is countable, so is $U \cap X(\Omega)$. So it is a union of a_{i} 's, which means that it is measurable.
(b) Suppose (a) holds. Show that $E(|X|)=\sum_{k=1}^{\infty}\left|a_{k}\right| P\left(X=a_{k}\right)$
$|X|$ only takes on countably-many values $\left|a_{1}\right|,\left|a_{2}\right|, \ldots$, so we use the indicator function trick from calculus that allowed us to integrate over planar regions!: $E(|X|)=\int_{\Omega} X(\omega) d P(\omega)=\int_{\Omega}|X(\omega)| \sum_{k=1}^{\infty} \chi(\omega) d P(\omega)$, where $\chi(\omega)=1$ if $\omega \in X^{-1}\left(a_{k}\right)$, and 0 otherwise. Then we have:
$E(|X|)=\sum_{k=1}^{\infty} \int_{\Omega}|X(\omega)| \chi(\omega) d P(\omega)$, by Fubini's theorem
$=\sum_{k=1}^{\infty} \int_{\Omega}\left|a_{k}\right| \chi(\omega) d P(\omega)$, since $X(\omega)$ can only take on the values a_{k}
$=\sum_{k=1}^{\infty}\left|a_{k}\right| \int_{\Omega} \chi(\omega) d P(\omega)=\sum_{k=1}^{\infty}\left|a_{k}\right| P\left(X=a_{k}\right)$, since $\int_{\Omega} \chi(\omega) d P(\omega)$ precisely only takes on the value $P\left(X=a_{k}\right)$ when $\omega=a_{k}$
(c) If (a) holds and $E(|X|)<\infty$, show that $E(X)=\sum_{k=1}^{\infty} a_{k} P\left(X=a_{k}\right)$

Partition the indices of a_{k} : Let $\{i\}_{i \in I}$ be the indices for which $a_{i} \geq 0$, and let $\{j\}_{j \in J}$ be the indices for which $a_{i}<0$. So by (b), $E\left(\left|X_{1}\right|\right)=\sum_{i \in I}\left|a_{i}\right| P\left(X=a_{i}\right)$ and $E\left(\left|X_{2}\right|\right)=\sum_{j \in J}\left|a_{j}\right| P\left(X=a_{j}\right)$ where X_{1} is X restricted to its non-negative-valued domain, and X_{2} is X restricted to its negative-valued domain. By assumption, the infinite series absolutely converges, so we can rearrange it to yield $E(X)=E\left(X_{1}\right)-E\left(X_{2}\right)=\sum_{k=1}^{\infty} a_{k} P\left(X=a_{k}\right)$
(d) If (a) holds and $f: \mathbb{R} \rightarrow \mathbb{R}$ is measurable and bounded, show that $E(f(X))=\sum_{k=1}^{\infty} f\left(a_{k}\right) P\left(X=a_{k}\right)$
$f(X(\Omega))$ is the image of countably-many values $X(\Omega)$, so it also contains at most countably-many values b_{k} (by definition of a function lol). Suppose this is infinite (finite case follows). So f restricted to the image of X is a random variable, and its expected value is given by part (c) as
$E(f(x))=\sum_{k}^{\infty} b_{k} P\left(f(x)=b_{k}\right)=\sum_{k=1}^{\infty} f\left(a_{k}\right) P\left(X=a_{k}\right)$
2.2. Let $X: \Omega \rightarrow \mathbb{R}$ be a random variable. The distribution function F of X is defined by $F(x)=P(X \leq x)$.
(a) Prove that F has the following properties:
$0 \leq F \leq 1, \lim _{x \rightarrow-\infty} F(x)=0, \lim _{x \rightarrow \infty} F(x)=1: 0 \leq F \leq 1$ since a probability measure is a function mapping to $[0,1]$ by definition. $\lim _{x \rightarrow-\infty} F(x)=0, \lim _{x \rightarrow \infty} F(x)=1$ follow from monotone convergence
F is non-decreasing: We want to show that $x_{1}>x_{2} \Longrightarrow F\left(x_{1}\right) \geq F\left(x_{2}\right)$. That is, $P\left(X \leq x_{1}\right) \geq P\left(X \leq x_{2}\right)$. Since $x_{1}>x_{2}, x_{1}=x_{2}+\epsilon$ for some $\epsilon>0$. Then $P\left(X \leq x_{1}\right)=P\left(X \leq x_{2}+\epsilon\right)=P\left(X \leq x_{2}\right)+P\left(x_{2} \leq X \leq x_{2}+\epsilon\right)$. Then by the nonnegativity of probability measures, this is greater than or equal to $P\left(X \leq x_{2}\right)$
F is right-continuous: We want to show that $F(x)=\lim _{h \rightarrow 0} F(x+h)$ for $h>0$. Let $A_{1} \supset A_{2} \supset \ldots$ be countable nested subsets of \mathbb{R}. Then $P\left(\lim _{n \rightarrow \infty} A_{n}\right)=\lim _{n \rightarrow \infty} P\left(A_{n}\right)$ by σ-additivity in Definition 2.1.1 (b). We can take $A_{n}=\{X \leq x+1 / n\}$. Then $P\left(\lim _{n \rightarrow \infty} A_{n}\right)=P(X \leq x)=F(x)$
(b) Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be measurable s.t. $E(|g(X)|)<\infty$. Prove that $E(g(X))=\int_{-\infty}^{\infty} g(x) d F(x)$, where the integral on the right is interpreted in the Lebesgue-Stieltjes sense.

By definition, $E(g(X))=\int_{\Omega} f(X(\omega)) d P(\omega)=\int_{\mathbb{R}} g(x) d \mu_{X}(x)$, where μ_{X} is the induced probability measure $\mu_{X}(B)=P\left(X^{-1}(B)\right)$. Then $\mu_{X}(\{X \leq x\})=P\left(X^{-1}(X \leq x)\right)=P(X \leq x)=F(x)$, so $E(g(x))=\int_{\mathbb{R}} g(x) d F(X)$ (c) Let $p(x) \geq 0$ be a measurable function on \mathbb{R}. Say that X has density p if $F(x)=\int_{-\infty}^{x} p(y) d y$ for all x. Then from (2.2.1)-(2.2.2) we know that 1-dimensional Brownian motion B_{t} with $B_{0}=0$ has density $p(x)=\frac{1}{\sqrt{2 \pi t}} \exp \left(-\frac{x^{2}}{2 t}\right)$ for $x \in \mathbb{R}$. What is the density of B_{t}^{2} ?

Let F be the distribution function of B_{t}^{2}. Then by definition, the desired density $q(y)$ must satisfy $F(x)=P\left(B_{t}^{2} \leq x\right)=\int_{-\infty}^{x} q(y) d y$. We can express this in terms of $B_{t}: P\left(B_{t}^{2} \leq x\right)=P\left(B_{t}<\sqrt{x}\right)=\int_{-\infty}^{\sqrt{x}} p(y) d y$ So we can differentiable both sides to get that $q(x)=p(\sqrt{x}) \cdot \frac{d}{d x} \sqrt{x}=\frac{1}{\sqrt{2 \pi t}} \exp \left(-\frac{x^{2}}{2 t}\right) \cdot \frac{1}{2 \sqrt{x}}$
2.3. Let $\left\{\mathcal{H}_{i}\right\}_{i \in I}$ be a family of σ-algebras on Ω. Prove that $\mathcal{H}=\cap\left\{\mathcal{H}_{i} \mid i \in I\right\}$ is again a σ-algebra.

We'll do this by confirming that \mathcal{H} satisfies our 3 properties of σ-algebras:

1. Contains \emptyset : Since each \mathcal{H}_{i} contains \emptyset, so does their intersection \mathcal{H}.
2. Closure under complements: Let $A \in \mathcal{H}$. Then $A \in \mathcal{H}_{i}$ for all $i \in I$, and by closure under complements for each \mathcal{H}_{i} we have that $A^{c} \in \mathcal{H}_{i}$. So A^{c} is in their intersection \mathcal{H}.
3. Closure under unions: Let $A_{i}, A_{2}, \cdots \in \mathcal{H}$. Then $A_{1}, A_{2}, \cdots \in \mathcal{H}_{i}$ for each $i \in I$, and their union is in each \mathcal{H}_{i} by closure under unions of each \mathcal{H}_{i}. So this union is in their intersection \mathcal{H}.
2.19: Let $(\Omega, \mathcal{F}, \mu)$ be a probability space and let $p \in[1, \infty]$. A sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ of functions $f_{n} \in L^{p}(\mu)$ is called a Cauchy sequence if $\left\|f_{n}-f_{m}\right\|_{p} \rightarrow 0$ as $n, m \rightarrow \infty$. The sequence is called convergent if there exists $f \in L^{p}(\mu)$ such that $f_{n} \rightarrow f$ in $L^{p}(\mu)$. Prove that every convergent sequence is a Cauchy sequence.

We are confirming that every convergent sequence in a metric space is Cauchy, in the special case where our metric space is $L^{p}(\mu)$. This is a simple application of the triangle inequality: Let $\left\{f_{n}\right\}_{n=1}^{\infty}=f_{1}, f_{2}, \ldots$ be a sequence converging to f, so $f_{n} \rightarrow f$ in $L^{p}(\mu)$. By the triangle inequality, we have that $\left\|f_{n}-f_{m}\right\|_{p} \leq\left\|f_{n}-f\right\|_{p}+\left\|f_{m}-f\right\|_{p}$
By convergence, there exist sufficiently large n and m s.t. $\left\|f_{n}-f\right\|_{p} \rightarrow 0$ and $\left\|f_{m}-f\right\|_{p} \rightarrow 0$. So $\left\|f_{n}-f_{m}\right\|_{p} \rightarrow 0$, and $\left\{f_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence.

