Chapter 2: Some Mathematical Preliminaries

Notes | Exercise Solutions

Notes

- · Here, we rigorously define some important concepts in probability theory.
- Notation note: P(A) used for the probability of A, and $\mathcal{P}(A)$ used for the power set of A.
- **Def** (Probability space): The 3-tuple (Ω, \mathcal{F}, P) , where
 - 1. Ω is a set containing elements which represents the sample space of outcomes
 - 2. \mathcal{F} (σ -algebra/ σ -field) is a set of subsets of Ω (that is, $\mathcal{F} \subseteq \mathcal{P}(\Omega)$) that satisfies 3 conditions:
 - 1. It contains \emptyset , the empty set
 - 2. Closure under unions: If $A \in \mathcal{F}$ and $B \in \mathcal{F}$, then $A \cup B \in \mathcal{F}$
 - 3. Closure under complements wrt Ω : If $A \in \mathcal{F}$, then $\Omega \backslash A \in \mathcal{F}$
 - 3. $P : \mathcal{F} \to [0,1]$ is a function that assigns values between 0 and 1 to elements of \mathcal{F} (i.e. subsets of Ω) that satisfies:
 - 1. $P(\emptyset) = 0$ and $P(\Omega) = 1$.
 - 2. Countable additivity: For a countable collection of disjoint events $A_1, A_2, \dots \in \mathcal{F}$, $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$
 - Def (Complete probability space): Say that (Ω, F, P) is a complete probability space if F contains all nullsets. What's a nullset? This builds up to it:
 - Def (Outer measure): An outer measure P^{*} is a function that maps all possible events in the sample space to the extended real numbers, P^{*}: P(Ω) → [0,∞], which satisfies:
 - 1. $P^*(\emptyset) = 0$
 - 2. Countable additivity: For countable subsets $A, B_1, B_2, \dots \subseteq \Omega$, if $A \subseteq \bigcup_{i=1}^{\infty} B_i$ then $P^*(A) \leq \sum_{i=1}^{\infty} P(B_i)$
 - Probability measures satisfy all the conditions of being an outer measure, except the domain is *F* instead of *P*(Ω). But we can kind of fix this: Given a probability space (Ω, *F*, *P*), define the *P*-outer measure as the mapping

 $P^*(A):=\inf\{P(F)\mid F\in\mathcal{F},A\subset F\}$

Our domain gets to be $\mathcal{P}(\Omega)$ now, because P^* is defined for all subsets of Ω , since Ω itself is in every σ -algebra.

- **Def** (Nullset): Say that $A \subseteq \Omega$ is a nullset if it has *P*-outer measure 0; that is, $P^*(A) = 0$
- Def (Measurability, of an event): Say that F ⊆ Ω is F-measurable if F ∈ F. Then, call F an 'event' and say that F 'occurs with' probability P(F).
- Some remarks:
 - The smallest σ-algebra: What's the smallest set of subsets of Ω that satisfies the three properties above? If we don't specify anything else, the smallest possible F = {φ, Ω}. The smallest σ-algebra containing A is called σ(A) or H_A, the σ-algebra generated by A

- The largest σ-algebra: Why not just use P(Ω) as F? Each element of F is essentially an 'event' that can be assigned a probability. We care about carving out subsets of Ω to use for F in our assignment of probabilities because we run into trouble when trying to define P in a nice way for certain Ω (it's not a problem for discrete ones). It might be too big.
- On P: A probability space is a special case of a measure space. It's a special case because of the $P(\Omega) = 1$ condition.
- Random variables:
 - Def (Measurability, of a function): Say that a function Y : Ω → ℝⁿ is *F*-measurable if the pre-images of all open sets are *F*-measurable, Y⁻¹(U) = {ω ∈ Ω | Y(ω) ∈ U} ∈ *F*, for all open sets U ∈ ℝⁿ. Basically, the pre-image of Y by every open set in ℝ is in *F*.
 - **Def** (Random variable): Let (Ω, \mathcal{F}, P) be a complete probability space. Then a random variable $X : \Omega \to \mathbb{R}^n$ is an \mathcal{F} -measurable function.
 - Lemma (Doob-Dynkin, special case): Let X, Y : Ω → ℝⁿ, and let H_X be the σ-algebra generated by X (i.e: smallest σ-algebra containing X). Then Y is H_X-measurable if and only if there exists a mapping g : ℝⁿ → ℝⁿ between X and Y s.t. Y = g(x), and g is Borel-measurable. That is, all of the pre-images of g on open sets are Borel sets
 - Def (Probability distributions): We didn't need P to define what a random variable is, since it's just a mapping from Ω to the reals. But now we need P to measure probabilities, because no shit.
 Let X be a random variable. Then the distribution of X is the probability measure induced by X,
 μ_X(B) = P(X⁻¹(B)) for all B ∈ ℝⁿ
 - Def (Expectation): Using the 'weights' assigned to each event by X, we define the weighted average of all possible events as E[X] := ∫_Ω X(ω)dP(ω) = ∫_{ℝⁿ} xdµ_X(x)
- L^p spaces
 - We'd like to to measure the norm of a random variable, and the distance between random variables. So
 we make them live in a function space, like an L^p-space
 - Def (Of a random variable X, its L^p-norm): Of any x ∈ ℝⁿ, its L^p norm is ||x||_p = (x₁^p + ··· + x_n^p)^{1/p} (for p = 2, this is the Euclidean norm). Of a random variable X on sample space Ω with probability measure P, for finite p it is ||X||_p = ∫_Ω |X(ω)|^pdP(ω))^{1/p} and for p = ∞ it is ||X||_∞ = ||X||_{L[∞](P)} = sup{|X(ω)| | ω ∈ Ω}
 - **Def** $(L^p \text{ space, } L^p(P) = L^p(\Omega))$: Contains all random variables $X : \Omega \to \mathbb{R}^n$ with finite L^p norms, with distance metric induced by the L^p norm, $d(X, Y) = ||X Y||_p$. Note that under this metric, L^p spaces are Banach spaces. In the special case of p = 2, it is a Hilbert space.
- **Def** (Independence):
 - Of events: Say that $A,B\in \mathcal{F}$ are independent if $P(A\cap B)=P(A)\cdot P(B)$
 - Of collections of events: Say that $A = \{A_i\}_{i \in I}$ are independent if for all pairs $i, j \in I, i \neq j$, A_i and A_j are independent
 - Of random variables: Say that $X, Y : \Omega \to \mathbb{R}$ are independent if \mathcal{H}_X and \mathcal{H}_Y , the σ -algebras generated by X and Y, are independent

- **Def** (Stochastic process): On (Ω, \mathcal{F}, P) , a collection of random variables $\{X_t\}_{t \in T}$ indexed by time.
 - Fix t ∈ T. Then we have a single random variable X_t with its associated probability measure.
 Fix a path ω ∈ Ω. Then we have a function that depends only on time, since there is no more randomness.
 - Thm (Kolmogorov, extension): Given a family of probability measures $\{\nu_{t_1}, \ldots, \nu_{t_k} \mid k \in \mathbb{N}, t_i \in T\}$ on \mathbb{R}^{nk} , there exists a probability space (Ω, \mathcal{F}, P) and a stochastic process $\{X_t\}$ on Ω s.t.
 - $u_{t_1,\ldots,t_k}(F_1 imes\cdots imes F_k)=P(X_{t_1}\in F_1,\ldots,X_{t_k}\in F_k) ext{ for all } t_i\in T,k\in\mathbb{N}, ext{ Borel sets } F_i$
 - 1. For all $t_1, \ldots, t_k \in T$, $k \in \mathbb{N}$, $\nu_{t_{\sigma(1)}, \ldots, t_{\sigma(k)}}(F_1 \times \cdots \times F_k) = \nu_{t_1, \ldots, t_k}(F_{\sigma^{-1}(1)} \times \cdots \times F_{\sigma^{-1}(k)})$ for all permutations σ of $\{1, \ldots, k\}$

2.
$$u_{t_1,\ldots,t_k}(F_1 \times \cdots \times F_k) = \nu_{t_1,\ldots,t_k,t_{k+1},\ldots,t_{k+m}}(F_1 \times \cdots \times F_k \times \mathbb{R}^n \times \cdots \times \mathbb{R}^n)$$
 for all $m \in \mathbb{N}$

- Thm (Kolmogorov, continuity): A stochastic process with discrete time $X = \{X_t\}_{t \ge 0}$ has a continuous version if, for all T > 0, there exist α, β, D s.t. $E[|X_t X_s|^{\alpha}] \le D \cdot |t s|^{1+\beta}$ for $0 \le s, t \le T$
- Very important instantiations
 - Def (Borel σ-algebra): Let Ω be a topological space, like ℝⁿ. Let U be the collection of all open subsets of Ω. Then the Borel σ-algebra B is σ(U), the smallest σ-algebra that contains U. The elements B ∈ B that are B-measurable are called Borel sets.
 - Def (Brownian motion): This is the most important stochastic process.
 - Construction: We 'construct' this process indirectly, by first constructing a measure we like and then using Kolmogorov's extension theorem to say that it exists. For $x, y \in \mathbb{R}^n$ and t > 0, define $p(t, x, y) = (2\pi t)^{n/2} \cdot \exp(-\frac{|x-y|^2}{2t})$. We like the following measure:

 $u_{t_1,\ldots,t_k}(F_1 imes\cdots imes F_k) = \int_{F_1 imes \cdot imes F_k} p(t_1,x,x_1) p(t_2-t_1,x_1,x_2) \ldots p(t_k-t_{k-1},x_{k-1},x_k) dx_1 \ldots dx_k$

- This measure satisfies K's 2 conditions, so such a stochastic process in such a probability space exists. We call this process Brownian motion. It has the following properties, which follow from how we defined v_{t1},...,t_k ...
- Properties: Say that a collection of real-valued random variables {B_t}_{t≥0} is a standard Brownian motion if it has the following properties:
 - 1. $B_0 = 0$
 - 2. Each sample path is continuous
 - 3. Stationary and normal increments: For any $t>s,~B_t-B_s\sim N(0,t-s)$
 - 4. Independent increments: For all disjoint intervals, increments are independent

Exercise Solutions

Exercises completed: 2.1, 2.2, 2.3, 2.19

2.1. Let $X: \Omega \to \mathbb{R}$ assume only countably many values $a_1, a_2, \dots \in \mathbb{R}$.

(a) Show that X is a random variable if and only if $X^{-1}(a_k) \in \mathcal{F}$ for all $k=1,2,\ldots$ (2.2.16)

We know that X is a random variable iff X is \mathcal{F} -measurable. That is, pre-images of all open sets are measurable, so $X^{-1}(U) = \{\omega \in \Omega \mid X(\omega) \in U\} \in \mathcal{F}$ for all open $U \in \mathbb{R}$.

 \implies : Let X be a random variable. Then by definition, X's pre-images of all open sets are all contained in \mathcal{F} . Since \mathcal{F} is closed under complements (and we know that pre-images of complements = complements of preimages from set theory), pre-images of all closed sets are also in \mathcal{F} . The singleton set $\{a_k\} \subset \mathbb{R}$ is closed, so its pre-image by X is \mathcal{F} -measurable.

 \Leftarrow : Let $X^{-1}(a_k) \in \mathcal{F}$ for all k. Since \mathcal{F} is closed under infinite unions (and unions of pre-images = pre-images of unions), we also have that $X^{-1}(\cup a_i) \in \mathcal{F}$ for any union of a_i 's. Let U be open in \mathbb{R} . Then $X^{-1}(U) = X^{-1}(U \cap X(\Omega))$, since the pre-image of a value that X does not take on is empty. Since $X(\Omega)$ is countable, so is $U \cap X(\Omega)$. So it is a union of a_i 's, which means that it is measurable.

(b) Suppose (a) holds. Show that $E(|X|) = \sum_{k=1}^{\infty} |a_k| P(X=a_k)$

|X| only takes on countably-many values $|a_1|, |a_2|, \ldots$, so we use the indicator function trick from calculus that allowed us to integrate over planar regions!: $E(|X|) = \int_{\Omega} X(\omega) dP(\omega) = \int_{\Omega} |X(\omega)| \sum_{k=1}^{\infty} \chi(\omega) dP(\omega)$, where $\chi(\omega) = 1$ if $\omega \in X^{-1}(a_k)$, and 0 otherwise. Then we have: $E(|X|) = \sum_{k=1}^{\infty} \int_{\Omega} |X(\omega)| \chi(\omega) dP(\omega)$, by Fubini's theorem $= \sum_{k=1}^{\infty} \int_{\Omega} |a_k| \chi(\omega) dP(\omega)$, since $X(\omega)$ can only take on the values a_k $= \sum_{k=1}^{\infty} |a_k| \int_{\Omega} \chi(\omega) dP(\omega) = \sum_{k=1}^{\infty} |a_k| P(X = a_k)$, since $\int_{\Omega} \chi(\omega) dP(\omega)$ precisely only takes on the value $P(X = a_k)$ when $\omega = a_k$

(c) If (a) holds and $E(|X|) < \infty$, show that $E(X) = \sum_{k=1}^\infty a_k P(X=a_k)$

Partition the indices of a_k : Let $\{i\}_{i \in I}$ be the indices for which $a_i \ge 0$, and let $\{j\}_{j \in J}$ be the indices for which $a_i < 0$. So by (b), $E(|X_1|) = \sum_{i \in I} |a_i| P(X = a_i)$ and $E(|X_2|) = \sum_{j \in J} |a_j| P(X = a_j)$ where X_1 is X restricted to its non-negative-valued domain, and X_2 is X restricted to its negative-valued domain. By assumption, the infinite series absolutely converges, so we can rearrange it to yield $E(X) = E(X_1) - E(X_2) = \sum_{k=1}^{\infty} a_k P(X = a_k)$

(d) If (a) holds and $f:\mathbb{R} o\mathbb{R}$ is measurable and bounded, show that $E(f(X))=\sum_{k=1}^\infty f(a_k)P(X=a_k)$

 $f(X(\Omega))$ is the image of countably-many values $X(\Omega)$, so it also contains at most countably-many values b_k (by definition of a function lol). Suppose this is infinite (finite case follows). So f restricted to the image of X is a random variable, and its expected value is given by part (c) as

$$E(f(x)) = \sum_k^\infty b_k P(f(x) = b_k) = \sum_{k=1}^\infty f(a_k) P(X = a_k)$$

2.2. Let $X : \Omega \to \mathbb{R}$ be a random variable. The distribution function F of X is defined by $F(x) = P(X \le x)$.

(a) Prove that F has the following properties:

 $0 \leq F \leq 1$, $\lim_{x \to -\infty} F(x) = 0$, $\lim_{x \to \infty} F(x) = 1$: $0 \leq F \leq 1$ since a probability measure is a function mapping to [0,1] by definition. $\lim_{x \to -\infty} F(x) = 0$, $\lim_{x \to \infty} F(x) = 1$ follow from monotone convergence

F is non-decreasing: We want to show that $x_1 > x_2 \implies F(x_1) \ge F(x_2)$. That is, $P(X \le x_1) \ge P(X \le x_2)$. Since $x_1 > x_2$, $x_1 = x_2 + \epsilon$ for some $\epsilon > 0$. Then $P(X \le x_1) = P(X \le x_2 + \epsilon) = P(X \le x_2) + P(x_2 \le X \le x_2 + \epsilon)$. Then by the nonnegativity of probability.

 $P(X \le x_1) = P(X \le x_2 + \epsilon) = P(X \le x_2) + P(x_2 \le X \le x_2 + \epsilon)$. Then by the nonnegativity of probability measures, this is greater than or equal to $P(X \le x_2)$

F is right-continuous: We want to show that $F(x) = \lim_{h \to 0} F(x+h)$ for h > 0. Let $A_1 \supset A_2 \supset \ldots$ be countable nested subsets of \mathbb{R} . Then $P(\lim_{n \to \infty} A_n) = \lim_{n \to \infty} P(A_n)$ by σ -additivity in Definition 2.1.1 (b). We can take $A_n = \{X \le x + 1/n\}$. Then $P(\lim_{n \to \infty} A_n) = P(X \le x) = F(x)$

(b) Let $g : \mathbb{R} \to \mathbb{R}$ be measurable s.t. $E(|g(X)|) < \infty$. Prove that $E(g(X)) = \int_{-\infty}^{\infty} g(x) dF(x)$, where the integral on the right is interpreted in the Lebesgue-Stieltjes sense.

By definition, $E(g(X)) = \int_{\Omega} f(X(\omega))dP(\omega) = \int_{\mathbb{R}} g(x)d\mu_X(x)$, where μ_X is the induced probability measure $\mu_X(B) = P(X^{-1}(B))$. Then $\mu_X(\{X \le x\}) = P(X^{-1}(X \le x)) = P(X \le x) = F(x)$, so $E(g(x)) = \int_{\mathbb{R}} g(x)dF(X)$

(c) Let $p(x) \ge 0$ be a measurable function on \mathbb{R} . Say that X has density p if $F(x) = \int_{-\infty}^{x} p(y) dy$ for all x. Then from (2.2.1)-(2.2.2) we know that 1-dimensional Brownian motion B_t with $B_0 = 0$ has density $p(x) = \frac{1}{\sqrt{2\pi t}} \exp(-\frac{x^2}{2t})$ for $x \in \mathbb{R}$. What is the density of B_t^2 ?

Let F be the distribution function of B_t^2 . Then by definition, the desired density q(y) must satisfy $F(x) = P(B_t^2 \le x) = \int_{-\infty}^x q(y) dy$. We can express this in terms of B_t : $P(B_t^2 \le x) = P(B_t < \sqrt{x}) = \int_{-\infty}^{\sqrt{x}} p(y) dy$ So we can differentiable both sides to get that $q(x) = p(\sqrt{x}) \cdot \frac{d}{dx}\sqrt{x} = \frac{1}{\sqrt{2\pi t}} \exp(-\frac{x^2}{2t}) \cdot \frac{1}{2\sqrt{x}}$

2.3. Let $\{\mathcal{H}_i\}_{i\in I}$ be a family of σ -algebras on Ω . Prove that $\mathcal{H} = \cap\{\mathcal{H}_i \mid i \in I\}$ is again a σ -algebra.

We'll do this by confirming that \mathcal{H} satisfies our 3 properties of σ -algebras:

- 1. Contains \emptyset : Since each \mathcal{H}_i contains \emptyset , so does their intersection \mathcal{H} .
- 2. Closure under complements: Let $A \in \mathcal{H}$. Then $A \in \mathcal{H}_i$ for all $i \in I$, and by closure under complements for each \mathcal{H}_i we have that $A^c \in \mathcal{H}_i$. So A^c is in their intersection \mathcal{H} .
- 3. Closure under unions: Let $A_i, A_2, \dots \in \mathcal{H}$. Then $A_1, A_2, \dots \in \mathcal{H}_i$ for each $i \in I$, and their union is in each \mathcal{H}_i by closure under unions of each \mathcal{H}_i . So this union is in their intersection \mathcal{H} .

2.19: Let $(\Omega, \mathcal{F}, \mu)$ be a probability space and let $p \in [1, \infty]$. A sequence $\{f_n\}_{n=1}^{\infty}$ of functions $f_n \in L^p(\mu)$ is called a Cauchy sequence if $||f_n - f_m||_p \to 0$ as $n, m \to \infty$. The sequence is called convergent if there exists $f \in L^p(\mu)$ such that $f_n \to f$ in $L^p(\mu)$. Prove that every convergent sequence is a Cauchy sequence.

We are confirming that every convergent sequence in a metric space is Cauchy, in the special case where our metric space is $L^p(\mu)$. This is a simple application of the triangle inequality: Let $\{f_n\}_{n=1}^{\infty} = f_1, f_2, \ldots$ be a sequence converging to f, so $f_n \to f$ in $L^p(\mu)$. By the triangle inequality, we have that $||f_n - f_m||_p \le ||f_n - f||_p + ||f_m - f||_p$

By convergence, there exist sufficiently large n and m s.t. $||f_n - f||_p \to 0$ and $||f_m - f||_p \to 0$. So $||f_n - f_m||_p \to 0$, and $\{f_n\}_{n=1}^{\infty}$ is a Cauchy sequence.