Chapter 2: Some Mathematical Preliminaries

Notes

Here, we rigorously define some important concepts in probability theory.
Notation note: P(A) used for the probability of A, and P(A) used for the power set of A.
Def (Probability space): The 3-tuple (2, F, P), where
Q is a set containing elements which represents the sample space of outcomes
F (o-algebra/o-field) is a set of subsets of Q (that is, 7 C P()) that satisfies 3 conditions:
It contains (), the empty set
Closure under unions: If A € F and B€ F, then AUB e F
Closure under complements wrt Q: If A € F, then Q\A € F
P:F —0,1] is a function that assigns values between 0 and 1 to elements of F (i.e: subsets of )
that satisfies:
P(0) =0and P(Q) =1.
Countable additivity: For a countable collection of disjoint events Ay, As,--- € F,
P(U2 A;) = 37, P(A))
Def (Complete probability space): Say that (Q, F, P) is a complete probability space if F contains all
nullsets. What's a nullset? This builds up to it:
Def (Outer measure): An outer measure P* is a function that maps all possible events in the
sample space to the extended real numbers, P* : P(Q2) — [0, 00|, which satisfies:
P*(0)=0
Countable additivity: For countable subsets A, B1, Ba,--- C , if A C U, B; then
P*(A) < X7, P(Bi)
Probability measures satisfy all the conditions of being an outer measure, except the domain is F
instead of P(£2). But we can kind of fix this: Given a probability space (2, F, P), define the P-
outer measure as the mapping
P*(A):=inf{P(F) | Fe F,AC F}
Our domain gets to be P(Q) now, because P* is defined for all subsets of €2, since Q itself is in
every o-algebra.
Def (Nullset): Say that A C Q is a nullset if it has P-outer measure 0; that is, P*(A4) =0
Def (Measurability, of an event): Say that F C Q is F-measurable if F' € F. Then, call F an 'event' and
say that F' 'occurs with' probability P(F).
Some remarks:
The smallest o-algebra: What's the smallest set of subsets of Q) that satisfies the three properties
above? If we don't specify anything else, the smallest possible F = {¢, Q}. The smallest o-algebra
containing A is called o(A) or H 4, the o-algebra generated by A
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The largest o-algebra: Why not just use P(Q2) as F'? Each element of F' is essentially an 'event'
that can be assigned a probability. We care about carving out subsets of Q to use for F in our
assignment of probabilities because we run into trouble when trying to define P in a nice way for
certain Q (it's not a problem for discrete ones). It might be too big.
On P: A probability space is a special case of a measure space. It's a special case because of the
P(Q2) =1 condition.
Random variables:
Def (Measurability, of a function): Say that a function Y : 2 — R™ is F-measurable if the pre-images of
all open sets are F-measurable, Y 1 (U) = {w € Q| Y(w) € U} € F, for all open sets U € R". Basically,
the pre-image of Y by every open set in R is in F.
Def (Random variable): Let (2, F, P) be a complete probability space. Then a random variable
X : Q — R" is an F-measurable function.
Lemma (Doob-Dynkin, special case): Let X,Y : @ — R", and let H x be the o-algebra generated by X
(i.e: smallest o-algebra containing X). Then Y is H x-measurable if and only if there exists a mapping
g:R™ — R"™ between X and Y s.t. Y = g(z), and g is Borel-measurable. That is, all of the pre-images
of g on open sets are Borel sets
Def (Probability distributions): We didn't need P to define what a random variable is, since it's just a
mapping from Q to the reals. But now we need P to measure probabilities, because no shit.
Let X be a random variable. Then the distribution of X is the probability measure induced by X,
px(B) = P(X}(B)) for all B R"
Def (Expectation): Using the 'weights' assigned to each event by X, we define the weighted average of
all possible events as E[X] := [ X(w)dP(w) = [p. zdpx(z)
L? spaces
We'd like to to measure the norm of a random variable, and the distance between random variables. So
we make them live in a function space, like an LP-space
Def (Of a random variable X, its LP-norm): Of any z € R, its L? norm is ||z||, = (2} +--- + z})'/?
(for p = 2, this is the Euclidean norm). Of a random variable X on sample space 2 with probability
measure P, for finite p it is || X||, = [, |X(w)[PdP(w))"/? and for p = oo it is
X oo = 1X[[ (p) = sup{| X()]| | w € 2}
Def (L? space, LP(P) = L*(Q2)): Contains all random variables X : @ — R™ with finite L? norms, with
distance metric induced by the L? norm, d(X,Y) = || X — Y|,. Note that under this metric, L? spaces
are Banach spaces. In the special case of p = 2, it is a Hilbert space.
Def (Independence):
Of events: Say that A, B € F are independent if P(AN B) = P(A) - P(B)
Of collections of events: Say that A = {A4,},c; are independent if for all pairs 4,5 € I,i # j, A; and A;
are independent
Of random variables: Say that X,Y : Q — R are independent if Hx and Hy, the o-algebras generated
by X and Y, are independent
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Def (Stochastic process): On (€2, F, P), a collection of random variables {X;}:cr indexed by time.
Fix t € T. Then we have a single random variable X; with its associated probability measure.
Fix a path w € Q. Then we have a function that depends only on time, since there is no more
randomness.
Thm (Kolmogorov, extension): Given a family of probability measures {v;,,...,v;, | k € N,t; € T} on
R", there exists a probability space (2, F, P) and a stochastic process {X;} on  s.t.
v, ot (F1 X - X Fy) = P(Xy, € Fy,..., Xy, € Fy) forallt, € T,k € N, Borel sets F;
For all t1,...,tr €T, k€N, Vtu(l),wtg(k)(Fl X oo X F) = vy (Fo11) X -+ X Fyoagy) for all
permutations o of {1,...,k}
(Fy X -+ X F x R* x --- x R") for all m € N

th,...,tk(Fl X oo x Fp) = Vi otiotistse - stim
Thm (Kolmogorov, continuity): A stochastic process with discrete time X = {X;};>¢ has a continuous
version if, for all T > 0, there exist a,, 8, D s.t. E[|X; — X,|*] < D- |t —s|'*P for 0 < s,t <T
Very important instantiations
Def (Borel o-algebra): Let © be a topological space, like R"™. Let U be the collection of all open subsets
of Q. Then the Borel o-algebra B is o(U), the smallest o-algebra that contains U.
The elements B € B that are B-measurable are called Borel sets.
Def (Brownian motion): This is the most important stochastic process.
Construction: We 'construct' this process indirectly, by first constructing a measure we like and then
using Kolmogorov's extension theorem to say that it exists. For z,y € R™ and ¢ > 0, define
p(t,z,y) = (2mt)"/2 - exp(—#). We like the following measure:
Uy, ot (F1 X oo X Fy) = IF1><~><Fk p(t1, z,1)p(te — t1,x1,22) ... p(tg — th_1, Th1, T)dxy . . . dxg,
This measure satisfies K's 2 conditions, so such a stochastic process in such a probability space
exists. We call this process Brownian motion. It has the following properties, which follow from how
we defined vy, ¢, ...
Properties: Say that a collection of real-valued random variables {B;};>¢ is a standard Brownian
motion if it has the following properties:
By=0
Each sample path is continuous

Stationary and normal increments: For any ¢t > s, B; — B; ~ N(0,t — s)

Independent increments: For all disjoint intervals, increments are independent
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Exercise Solutions

Exercises completed: 2.1, 2.2, 2.3, 2.19

2.1. Let X : Q — R assume only countably many values aq,as,--- € R.

(a) Show that X is a random variable if and only if X *(a;) € F forall k=1,2,... (2.2.16)

We know that X is a random variable iff X is F-measurable. That is, pre-images of all open sets are measurable,
so X 1(U) ={we Q| X(w) €U} € F for all open U € R.

= : Let X be a random variable. Then by definition, X's pre-images of all open sets are all contained in F.
Since F is closed under complements (and we know that pre-images of complements = complements of pre-
images from set theory), pre-images of all closed sets are also in F. The singleton set {a;} C R is closed, so its
pre-image by X is F-measurable.

<= : Let X (a;) € F for all k. Since F is closed under infinite unions (and unions of pre-images = pre-images
of unions), we also have that X ! (Ua;) € F for any union of a;'s. Let U be open in R. Then

X YU) = X H(UN X(Q)), since the pre-image of a value that X does not take on is empty. Since X(9) is

countable, so is U N X(Q2). So it is a union of a;'s, which means that it is measurable.

(b) Suppose (a) holds. Show that E(|X|) = Y 7, |ar| P(X = ax)

| X| only takes on countably-many values |ay|, |as], ..., so we use the indicator function trick from calculus that
allowed us to integrate over planar regions!: E( |X| fQ P(w) = [o | X(w)| > ey x(w)dP(w), where
xw)=1lifwe X (a ) and 0 otherwise. Then we have.

E(1X]) =>4 [ |X (w)dP(w), by Fubini's theorem

=Y Jo larlx(w ( ) since X (w) can only take on the values ay,

=0 lakl fﬂx (w) = >y lax|P(X = ag), since [, x(w)dP(w) precisely only takes on the value

P(X = ay) when w = ay,
(c) If (a) holds and E(|X|) < oo, show that E(X) = Y77, axP(X = ay,)

Partition the indices of a;: Let {i};c; be the indices for which a; > 0, and let {j};c; be the indices for which
a; < 0. So by (b), E(|X1|) = > icrlai| P(X = a;) and E(|X2|) = >_,cs|a;|P(X = a;) where X is X restricted
to its non-negative-valued domain, and X, is X restricted to its negative-valued domain. By assumption, the

infinite series absolutely converges, so we can rearrange it to yield E(X) = E(X;) — BE(Xs) = > 1o, arP(X = ay)
(d) If (a) holds and f: R — R is measurable and bounded, show that E(f(X)) = Y 1, f(ar)P(X = ax)

F(X(9)) is the image of countably-many values X (2), so it also contains at most countably-many values by (by
definition of a function lol). Suppose this is infinite (finite case follows). So f restricted to the image of X is a

random variable, and its expected value is given by part (c) as

E(f(z)) = Xk kP(f(2) = br) = 2252y flar) P(X = ay)

may 2023 | for typos/mistakes, email lyra.gao@columbia.edu



2.2. Let X : © — R be a random variable. The distribution function F' of X is defined by F(z) = P(X < z).
(a) Prove that F has the following properties:

0<F<1, lim F(z)=0, lim F(z) =1: 0 < F <1 since a probability measure is a function mapping to [0, 1]
T—>—00 T—00

by definition. lim F(z) =0, lim F(z) =1 follow from monotone convergence
T—r—00 Tr—00

F'is non-decreasing: We want to show that z; > 3 = F(z1) > F(x2). Thatis, P(X < z1) > P(X < z,).
Since 1 > 9, 1 = 5 + € for some € > 0. Then
P(X<z1)=P(X <zy+€)=P(X <z3)+ P(xa < X <z3+¢€). Then by the nonnegativity of probability

measures, this is greater than or equal to P(X < z,)

F is right-continuous: We want to show that F(z) = }lin%] F(x + h) for h > 0. Let A; D Ay D ... be countable
—

nested subsets of R. Then P(nlgglo Ap) = Jlim P(A,) by o-additivity in Definition 2.1.1 (b). We can take

A, ={X <z +1/n}. Then P( le A,) =P(X <z)=F(x)

(b) Let g: R — R be measurable s.t. E(|g(X)|) < oo. Prove that E(g(X)) = [ g(z)dF(z), where the integral

on the right is interpreted in the Lebesgue-Stieltjes sense.

By definition, E(g(X)) = [, f(X(w) = [p 9(x)dpx(z), where px is the induced probability measure
ux(B) = P(X~(B)). Then jux({X - w}) _P(X (X< w)) ~ P(X < 2) = F(), s0 B(g(x)) = [, o(x)dF(X)

(c) Let p(z) > 0 be a measurable function on R. Say that X has density p if F(z) = [*_ p(y)dy for all z. Then
from (2.2.1)—(2.2.2) we know that 1-dimensional Brownian motion B; with By = 0 has density
p(z) = \/1 exp(— ) for z € R. What is the density of BZ?

Let F be the distribution function of B2. Then by definition, the desired density g(y) must satisfy
F(z) = P(B? <z) = [ q(y)dy. We can express this in terms of B;: P(B} < z) = P(B; < y/z) = fj/i p(y)dy

So we can differentiable both sides to get that g(z) = p(vz) - =/ = #exp( zy. ﬁ

2.3. Let {Hi}icr be a family of o-algebras on Q. Prove that H = N{#,; | i € I} is again a o-algebra.
We'll do this by confirming that H satisfies our 3 properties of o-algebras:

Contains 0: Since each H; contains 0, so does their intersection #.

Closure under complements: Let A € H. Then A € H,; for all i € I, and by closure under complements for
each H; we have that A° € H;. So A€ is in their intersection .

Closure under unions: Let A;, Ay,--- € H. Then A, Ay,--- € H; for each ¢ € I, and their union is in each

‘H; by closure under unions of each #;. So this union is in their intersection H.
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2.19: Let (Q, F, i) be a probability space and let p € [1,00]. A sequence {f,}°°, of functions f, € L?(u) is
called a Cauchy sequence if ||f, — fm|lp = 0 as n,m — co. The sequence is called convergent if there exists

f € LP(u) such that f,, — f in LP?(u). Prove that every convergent sequence is a Cauchy sequence.

We are confirming that every convergent sequence in a metric space is Cauchy, in the special case where our
metric space is LP(u). This is a simple application of the triangle inequality: Let {f,}°; = f1, f2,... be a
sequence converging to f, so f, — f in LP(u). By the triangle inequality, we have that

[fr = Faullp < 1 fn = Fllp + [1fm — I

By convergence, there exist sufficiently large n and m s.t. ||f, — f||, — 0 and ||f, — fl[, = 0. So

||fn — fmllp = 0, and {f,}22, is a Cauchy sequence.

n=1
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