Chapter 4: The Itô Formula and the Martingale Representation Theorem

Notes | Exercise Solutions

Notes:

- Def (1-dimensional Itô process): If B_{t} is a 1-dimensional Brownian motion on (Ω, \mathcal{F}, P), then say that a stochastic process X_{t} is a 1-dimensional Itô process on the same probability space if it is given by $X_{t}=X_{0}+\int_{0}^{t} u(s, \omega) d s+\int_{0}^{t} v(s, \omega) d B_{s}$ where $v \in \mathcal{W}_{\mathcal{H}}$. Then we can express X_{t} in the following way: $d X_{t}=u d t+v d B_{t}$.
- Thm (1-dimensional Itô formula): For $d X_{t}=u d t+v d B_{t}$, define $Y_{t}=g\left(t, X_{t}\right)$ for g twice continuously differentiable $[0, \infty) \times \mathbb{R}$. Then $d Y_{t}=\frac{\delta g}{\delta t}\left(t, X_{t}\right) d t+\frac{\delta g}{\delta x}\left(t, X_{t}\right) d X_{t}+\frac{1}{2} \frac{\delta^{2} g}{\delta x^{2}}\left(t, X_{t}\right) \cdot\left(d X_{t}\right)^{2}$ where $\left(d X_{t}\right)^{2}=\left(d X_{t}\right) \cdot\left(d X_{t}\right)$ is computed using the following rules:
- $d t \cdot d t=d t \cdot d B_{t}=d B_{t} \cdot d t=0$
- $d B_{t} \cdot d B_{t}=d t$
- Thm (Integration by parts): Let $f(s, \omega)$ be continuous and of bounded variation wrt $s \in[0, t]$ for almost all ω Then $\int_{0}^{t} f(s) d B_{s}=f(t) B_{t}-\int_{0}^{t} B_{s} d f_{s}$
- Thm (Martingale representation): Let $B(t)=\left(B_{1}(t), \ldots, B_{n}(t)\right)$. Let M_{t} be an $\mathcal{F}_{t}^{(n)}$-martingale wrt P and $M_{t} \in L^{2}(P)$ for all $t \geq 0$. Then there exists a unique stochastic process $g(s, \omega)$ s.t. $g \in \mathcal{V}^{(n)}(0, t)$ for all $t \geq 0$ and $M_{t}(\omega)=E\left(M_{0}\right)+\int_{0}^{t} g(s, \omega) d B(s)$ almost surely for all $t \geq 0$

Exercise Solutions:

Exercises 4.1 a) 4.2
4.1 a) Use Itô's formula to write X_{t} in the standard form $d X_{t}=u(t, \omega) d t+v(t, \omega) d B_{t}$ for $X_{t}=B_{t}^{2}$ where B_{t} is 1-dimensional:

Take $g(x, t)=x^{2}$ and $X_{t}=B_{t}^{2}$. Then $\frac{\delta g}{\delta t}\left(t, X_{t}\right)=0, \frac{\delta g}{\delta x}\left(t, X_{t}\right)=2 x$, and $\frac{\delta^{2} g}{\delta x^{2}}\left(t, X_{t}\right)=2$.
So $d B_{t}^{2}=2 B_{t} d B_{t}+\left(d B_{t}\right)^{2}=2 B_{t} d B_{t}+d t$
4.2 Use Itô's formula to prove that $\int_{0}^{t} B_{s}^{2} d B_{s}=\frac{1}{3} B_{t}^{3}-\int_{0}^{t} B_{s} d s$

Take $g(x, t)=\frac{1}{3} x^{3}, X_{s}=B_{s}$. Then by Itô's formula, we have that $d Y_{s}=d\left(\frac{1}{3} B_{s}^{3}\right)=B_{s}^{2} d B_{s}+B_{s} d s$, so $\frac{1}{3} B_{t}^{3}=\int_{0}^{t} B_{s}^{2} d B_{s}+\int_{0}^{t} B_{s} d s$. Rearranging, this is $\int_{0}^{t} B_{s}^{2} d B_{s}=\frac{1}{3} B_{t}^{3}-\int_{0}^{t} B_{s} d s$

