
Chapter 4: The Itô Formula and the Martingale Representation Theorem 

Notes | Exercise Solutions

Notes:

Def (1-dimensional Itô process): If  is a 1-dimensional Brownian motion on , then say that a

stochastic process  is a 1-dimensional Itô process on the same probability space if it is given by 

 where . Then we can express  in the following way: 

.

Thm (1-dimensional Itô formula): For , define  for  twice continuously

differentiable . Then  where 

 is computed using the following rules:

Thm (Integration by parts): Let  be continuous and of bounded variation wrt  for almost all 

. Then 

Thm (Martingale representation): Let . Let  be an -martingale wrt 

and  for all . Then there exists a unique stochastic process  s.t.  for

all  and  almost surely for all 

Exercise Solutions:

Exercises 4.1 a) 4.2

4.1 a) Use Itô's formula to write  in the standard form  for  where  is

1-dimensional:

Take  and . Then , , and . 

So 

4.2 Use Itô's formula to prove that 

Take , . Then by Itô's formula, we have that , so 

. Rearranging, this is 
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